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A b s l n d .  We study the number of distinct sites visited by a random walker in d = 1 after 

limit of large t. We find an unusual crossover in the probability density at S-S, -mi. 
For S<< S,, q(S, I) - S-' and for S x S,, q(S ,  1 ) -  SI-'" exp(-Si/4Di). From this cross- 
over it follows that the mean number of distinct sites visited is (S(l))-ln(l). 

rirpr, ;ii), in piejence of .ae cs:cs:sir &aii>uiian s(s, ;j 5;:; la ;he 

The number of distinct sites visited by a f-step random walk is one of the most important 
properties of a discrete-time lattice random walk [l-61. A large number of physical 
and chemical processes such as exciton trapping 171 and diffusion limited reactions 
[4,8,9] can be described by first passage time events which are closely related to the 
number of distinct sites visited. 

The mean number of distinct sites visited by a random walker at time t, (S(r)), was 
calculated for any dimension (see e.g. [SI), on fractal systems [4, IO] and for a set of 
N random walkers [ l l ] .  In this letter we present an analytical solution for the number 
of distinct sites visited by a one-dimensional random walker in the presence of a trap. 
We findthat(S(f))- In(f),in contrastto the knownresult(S(f))-fifortheunrestricted 
random walker. 

We consider a one-dimensional system with a trap at x = 0 and a random walker 
that starts at a given site x,, > 0. Since we are interested in finding ( S (  t ) )  in the limit 
of a large number of steps, we shall use the diffusion approximation for the random 
walk probability density. 

Let ~ ( x ,  f) denote the probability density that a site x will be first visited at time 
f by the random walker, then the probability of a site x to be visited at least once up 
to time f is: r(x, I) =ji y(x,  r )  dr. The probability density that the right most point 
visited by the random walker (which corresponds to the number of distinct sites in 
the discrete case for large f or small x,,) is exactly S up to time f is: q ( S ,  f)= 

walker up to time t can be easily shown to be: 
~ r a r  / ...I T T r i - n  this A i - L h . . + i n -  thn Q X I P ~ O ~ P  tnrritnr~r r r r i r p r d  hir ths mnrlnm L"'/"n,x--S. ,,",U6 LI1.O YI~L.."",,".., La.* U,.,.Y6' " . L . L Y . J  -v.*IuY "J  LY..Y"L..  

( S ( t ) ) =  /xydSSq(S. 0 

Using integration by parts and the fact that r (xo ,  1) = 1, we get 

(S(f)) = xo+ lo' d.r lx; d S  y(S, T )  E xo+ 
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In order to find y(S, I ) ,  we introduce another (artificial) trap at x = S. We will calculate 
the probability density p(x ,  f l S )  of a random walker to be at x at time I in the presence 
of a trap at x = 0 and x = S. It is easy to see that 

The solution of the diffusion equation, Jp/Jf = Dd2p/Jx2, together with the follow- 
ing boundary conditions: 

p ( x =  S, tlS) =o  p ( x = O ,  rlS)=O p(x ,  f =OlS) = S(x-x,) 

is given by: 

We begin by calculating (S(f)) directly in the time domain and later by using the 
Laplace transformation. The first approach gives a better physical insight into the 
problem, while the second is mathematically more rigorous. To find ( S ( t ) )  we begin 
with calculating I( I), which is defined in (1): 

As f + W ,  the magnitude of the infinite sum can be estimated to be Z,"_, 2/(4m2-1) 
where N - m / x o .  The term in parentheses can now be evaluated to be: 

2 dx  x, 
41)1'-1-/~ g=m' m = ~ 4 m 2 - 1  ,,,=N+I 

m 
- -- N 2  

1- 1 -- 

Thus I (  f) - xo/ f and 

( S ( r ) )  = xo+ lo' dTI(7)  - x, In(t). (4) 

Equation (4) gives only an order of magnitude of the correct result. The source of 
the difficulties to obtain an exact result is the approximate cut-off used to estimate the 
infinite sum appearing in (2). The Laplace representation eliminates the infinite sum 
and both (S( t ) )  and the form of the probability density q (  S, 1) .  can be derived rigorously. 
It can be shown from (2) that: 

s i n h ( m x o )  
s i n h ( m S )  ' 

e-"y(S,f)df= . 

Using the properties of Laplace transform it can also be shown that r(S, s) = T(S, s)/s. 
Thus, the Laplace transform of q(S, I )  is: 

(6) 
-1 J i ( S ,  s) 1 s i n h ( m x o )  c o s h ( m S )  
s JS s i n h 2 ( m S )  

q( S, s) = - __ -- - 
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The Laplace transform of the mean area ( S ( t ) )  is: 

(%))= dSStT(S,s) 
m 

= 3- S g s i n h (  &x0) In tan.(: &) 
and 

( ~ ( s + o ) )  =3 S (1 -In(: &)), 
Thus, in the large time limit we find: 

( ~ ( t  + 00)) = x,,( 1 +In( T) +IY+; In(*)) -3 2 In(,) (8) 

(7) 

(y=O.57721.. . is Euler's constant) in agreement with the qualitative result, 
equation (4). 

To get a better understanding of the origin of this slow divergence, we study the 
asymptotic behaviour of the probability density q(S, f )  for a fixed and large time t. 
This can be found using the Laplace representation: 

x, c o s h ( m  S) 
D s i n h 2 ( m  S) 

q(S,  s + 0 )  =- 

Thus the form of the probability density of the number of distinct sites for large t is: 

It is seen that at S = S, = 
decay. Thus the origin of the logarithmic dependence is due to: 

there is a crossover from algebraic decay to a Gaussian 

It is interesting to compare this result to the average position of the surviving 
particles at time 1. Using the probability density of the random walker in the presence 
of a single trap (see e.g. [ 6 ] ) :  

the survival probability density is: 
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where @(x) is the probability integral. Thus, the conditional probability for the surviving 
random walker to be found at x at time r is: p(xlr)=p(x, f)/p(r), and its average 
position is: 

For the long time limit of p ( t )  it follows that 

Thus we conclude that the average temtory covered by the random walker in the 
presence of a trap is proportional to xo In(t) in spite of the fact that the surviving 
random walkers at time f are located around fi (regardless of x,J. This situation is 
significantly different from the free random walker case. If we define S(r) as the right 
most point that a random walker, without a trap at x = 0, visited up to time r, then a 
similar analysis gives the following trivial results: 

(X( I ) )  - m. (11) 

The reason for the significant difference between the results is that as time evolves, 
the number of surviving particles decreases due to the trap at the origin. This decrease 
is so strong that, in spite of the fact that the surviving particles are located around 
J*DI, they hardly affect the distribution q(S, 1) and the mean territory covered so 
far--(S( I)). When the trap is absent, all the particles survive, so both (S( t ) )  and (Ix( t ) l )  
have the same meaning and both are proportional to A. 

Another physical quantity that exhibits the strong effect of the trap is the average 
value of the first passage time to  reach a location x, (T(x)). In general, 

For the free random walk one can easily find that (T(x))+oo for any x. However, for 
a random walk in the presence of a trap one can find that: 

which is a finite quantity. This is due to the fact that for t >> x2/D the system is static 
as can be seen from rewriting (9) in the following form: 

if t >> x2/ D i"- if r<cx2/D. 
(14) q(x,r+oo)= 

&5%7e-X1'4D' 

Thus (T(x)) essentially represents the crossover time in (14). 
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